Monty Hall

I have always been amused and intrigued by responses to “The Monty Hall Problem”, especially when I talk about it to audiences with a high concentration of engineers and mathematicians. If you are familiar with it, but you’ve always struggled with an unsettled feeling of “this can’t be right”, read further and let me know if my explanation of the solution helps to alleviate the discomfort. If you are not familiar, I guarantee you will give your brain a workout by reading on.

First posed to statisticians in 1975, “The Monty Hall Problem” is well-known among academics because it still sparks debate. Many seem to think that disagreements about its solution stem from issues in the clarity of the problem, but I contend that it really stems from human flaws in the way that we process information.

I often discuss this problem in statistics and cognitive psychology courses for several reasons. It is a great exercise in probability calculation and it can be used to teach basic mathematical modeling (and its purpose). An added benefit, since almost all of my students were psychology majors, is that it also illustrates a flaw in human cognition as well as a pattern of problem solving.  Even a knowledgeable statistician feels the need to run simulations to see the solution in action. Even then, fully grasping the mechanisms behind the answer often requires brute force cognition.

In general, human beings have a very difficult time wrapping their brains around concepts of probability. It is much like a visual illusion; we know that the lines are parallel/the circles are the same size/there is no motion, but we can’t make our brains process it in a way that represents that reality. It’s just not how our visual system works. I hypothesize that one of the reasons that probability is such a difficult field for most people is that it involves theory and models, which are distinct from observations and we must represent them differently in our minds to properly deal with them. Applications of probability often involve switching gears from the realm of models to data or vice versa and this is where I think most mathematicians get side-swiped in The Monty Hall Problem.

### The Poser

In essence, here’s the problem: