Latest Entries »

(Submitted by Skepticality listener  Chris Benson.)

I have two similar-ish stories:

1. In the fall of 1979 my family moved from Muscatine, Iowa to Kingman, AZ. It was the week before Halloween of my senior year and I was leaving behind a graduating class of 379.

On my first or second day at my new High School, I was walking down the hall and found myself looking at an acquaintance from my old High School class! We were both surprised, to say the least.

2. In the early ’80s I was at Arizona State and a friend of mine from our dorm needed a ride to the University of Arizona for an ROTC function. I had a friend from Kingman whom I knew was at U of A, but we had not spoken for a couple of years, and I had no other information, but figured I could go try to hunt him down.

I dropped my dorm-mate off at his ROTC thing and went to the Student Union to see if I could look my other friend up in a school directory. The fellow at the service desk in the Union said he couldn’t help me because they didn’t have a directory.

I knew driving down that it was a wild goose chase, but I was really disappointed.

Then I turned around trying to think of something else to try, and I’ll be damned if he wasn’t standing there. He was on his way to dinner at the Union’s cafeteria, and we spent a lovely evening together.

The population of that school was around 30,000 at the time, so I figure the odds were something close to that.


Below are the extended notes provided by contributing editor Mark Gouch for use in Skepticality Episode 258. Mark is a wastewater treatment system operator and engineer living in Smithtown, NY (Long Island). He started to become interested in coincidences after recognizing the series of events that conspired to get him employment on Long Island many years ago. Two of Mark’s recommended books include “The Drunkard’s Walk: How Randomness Rules Our Lives” by American physicist and author Leonard Mlodinow, and “The Hidden Brain: How Our Unconscious Minds Elect Presidents, Control Markets, Wage Wars, and Save Our Lives” by Shankar Vedantam.

Take a look and leave your comments below. Also, please be sure to listen to the podcast for our own hilarious commentary.

1. This is probably impossible to estimate numerical odds. So many factors affect everything that happens. For example way back in 1979, what were the economics of Iowa and Arizona? In general there has been a movement of people in the US to the sun belt. If some specific economic or other conditions made making the move desirable, that would make the chances of meeting someone who made a similar move greater.

2. I’m glad that this story happened over 25 years ago. I did not notice at first that Chris said it was in the ’80s. I was about to criticize him for not doing a web search, or look for a friend on the face thing, or do an on-line criminal records search or something, to try to find his friend. But since it was a long time ago, he will be spared that criticism. If he should run into a similar situation in this decade, we know he will avail himself of the various internet tools to increase odds of success again.

We are sure that it must have been surprising to find his friend. Trying to estimate the odds of doing so is probably not really possible. But I think that as usual, there are some factors that make the odds much better than we might intuitively think at first. And it is worth thinking about them.

Let’s think about a few possible items. There may be a lot of odds reducers that he did not mention. For example, I suspect his friend lived in a campus dormitory and he happened, on purpose, or by chance, to go to the student union at dinner time.

I suspect that since it was a friend he was looking for, they may have gone to high school together. This means that his friend most likely lived in a dorm at the campus. If so, then it would actually have been a great plan to try to find a campus dormitory-living student by going to the student union cafeteria at dinnertime. Or breakfast time or lunch time.

Now if the population of the school was around 30,000 at the time, and half of the students lived in a dorm, then your odds of finding the person would roughly double. That would be about 1 in 15,000 chance, which is pretty long odds.

 

(Submitted by Skepticality listener Vandy Beth Glenn)

Last Saturday afternoon, I was watching the TV show Fringe on Netflix streaming. In the guest-cast credits of the third-season episode, “Do Shapeshifters Dream of Electric Sheep?,” I saw the name “Marcus Giamatti.” I’d never heard of him or seen the name, and wondered if he was related to Paul Giamatti, one of my favorite actors. So I looked him up on the IMDb and saw that they’re brothers. “Cool,” I thought, and that was that.

Later that same day I got on my treadmill for my daily run. I watch TV while I run, and this time I had a DVD from CSI Season 10, also provided by Netflix.

The next episode on this disc was “Lover’s Lanes.” The guest cast for this episode included, you guessed it: Marcus Giamatti.

What are the odds?


Below are the extended notes provided by cognitive psychologist and statistician Barbara Drescher for use in Skepticality Episode 256.  Take a look and leave your comments below. Also, please be sure to listen to the podcast for our own hilarious commentary. Also, visit Barbara’s blog ICBS Everywhere, and Insight at Skeptics Society.

Once again it’s not a reasonable task to calculate these odds, but it is an opportunity to discuss what questions we should ask ourselves before getting too excited about the coincidence.

A look at IMDB tells us that Marcus Giamatti has a pretty long resume, but since many of the entries are guest spots on episodes of short-lived TV shows, we shouldn’t expect to see him when choosing something at random.

However, once we have paid attention to something, we are much more likely to notice the same thing or something similar or related afterward. This concept is called “priming”.

How many times has the author seen this actor in something and did not take note? Would she have noticed him in the episode of CSI if she had not looked him up earlier in the day? Had she seen this episode before and was not interested enough in who the actor was to look him up?

Also, how many times has the author seen an actor in two roles on the same day without noticing?

Another interesting question to consider: how much time would need to be between these two sightings to make the coincidence uninteresting (not a coincidence)? A day? A week?

Attention is really important when it comes noticing crazy odds.

The Man in the Arena

(Submitted by Skepticality listener, Skeptic Society blogger and Junior Skeptic Editor, friend of the blog Daniel Loxton)

I spent much of last summer preparing my speech for The Amazing Meeting 2014, a large skeptics conference in Las Vegas. It was totally nerve-wracking. I’m shy. I get stage fright. I’d never given a solo talk of that length in front of such an enormous crowd—1200 people! Many of my intellectual heroes would be in the audience. And, I was planning a very emotional talk about beauty and joy and meaning.

So I spent five weeks writing and obsessively polishing that talk, titled “A Rare and Beautiful Thing.” Its themes were built on discussion of skeptics of previous generations, including magician Harry Houdini. I said this:

When Rinn’s old friend Houdini finally did get into the fight, he arrived as a mighty champion. He brought skill and knowledge, and wealth and fame. Houdini studied and investigated and wrote books, and gave demonstrations.

He went to Congress to fight for tougher laws against fraudulent fortunetellers, at least in the nation’s capital. He fought with passion, and gravity of purpose.

And he lost.

There is a strange and heartbreaking beauty in that.

As I worked to cram two thousand years of scientific skepticism into half an hour, I was forced to make cuts. One of the last things I cut, very reluctantly, was this abbreviated quote from Theodore Roosevelt, which had accompanied the Houdini passage:

“The credit belongs to the man who is actually in the arena, whose face is marred by dust and sweat and blood; who strives valiantly; who errs, who comes short again and again…but who does actually strive to do the deeds…and who at the worst, if he fails, at least fails while daring greatly…”

When I delivered the talk, the vast hall was silent. I had no clue whether the crowd was coming along with me. Then, as I finished the speech and stumbled off the stage in relief, I discovered that they had. Dozens of people rushed to talk to me. It was among the most amazing moments of my life.

One of those people was ‎a woman named Anna Maltese, who held a piece of paper in her hand. She wanted me to know that the talk had inspired her to share a favorite passage by her favorite American President. She felt sure I’d like it, so she had written it down for me. I looked at the paper. It said, “The credit belongs to the man who is actually in the arena, whose face is marred by dust…”

I was stunned. It was the final surreal touch to an unforgettable day.


Below are the extended notes provided by cognitive psychologist and statistician Barbara Drescher for use in Skepticality Episode 255.  Take a look and leave your comments below. Also, please be sure to listen to the podcast for our own hilarious commentary. Also, visit Barbara’s blog ICBS Everywhere, and Insight at Skeptics Society.

The quote is not obscure, but it is not exactly “Four score and seven years ago,” either. It is seen rarely enough to make this feel like a crazy coincidence. And perhaps it was an unlikely event, but there are a few factors which increase the odds quite a bit.

The first thing that we must always consider is that the commonalities we know about (e.g., the Amazing Meeting) are usually related to things we might not have considered–something called confounding variables. Anna’s attendance at the event was not random. The subject matter that brought speaker and audience member together is somewhat academic in nature and those interested in it tend, on average, to be more educated than average. The odds that someone in the audience would be familiar with such a quote are higher than the odds that any random person would. Even the odds that an audience member would count that quote among their favorites are higher.

But I think that the most credit for this incident must go to the simple fact Daniel’s speech communicated his message so clearly that the quote he wanted to use to illustrate it was brought to the mind of an audience member who was intimately familiar with it. That’s a brilliantly crafted and delivered speech.

(Please click here to watch Daniel Loxton’s address at The Amazing Meeting 2014.)

Monkey’s Uncle

(Submitted by Skepticality listener Brian Hart)

I’m taking college level courses at UCLA to complete my education. I was sitting, an hour before class, and reading in our Anthropology book, a chapter about primates. I had no idea there were so many species around the globe. Anyway, one of the Old World species I had never heard of before, the Vervet Monkey, native to Africa, was mentioned in the book along with it’s picture. The chapter I was reading was about sexual reproduction, populations, groups, etc.

I closed the book and headed on to my Anthropology class and put George Hrab’s skeptical show, The Geologic Podcast, episode #383. In the amusing segment called, Interesting Fauna, Geo started talking about a species of primate and it’s mating habits. Can you guess which species? Yep, the Vervet Monkey.

I’ll be a Monkey’s Uncle (or, I share about 96% of my DNA with my Monkey Uncle)!


Below are the extended notes provided by cognitive psychologist and statistician Barbara Drescher for use in Skepticality Episode 254.  Take a look and leave your comments below. Also, please be sure to listen to the podcast for our own hilarious commentary. Also, visit Barbara’s blog ICBS Everywhere, and Insight at Skeptics Society.

It’s a cute story, but there is absolutely no way to calculate the odds of this happening. It’s highly likely that the author would read about vervet monkeys in an anthropology book, but the likelihood of the topic being discussed on a podcast is a pretty difficult thing to quantify. George is not an anthropologist, zoologist, or any other profession that would be expected to talk about primates. He is a musician by trade and his podcast is about science and skepticism. There are many potential topics for his show and while monkeys certainly aren’t a strange thing to discuss, it’s not exactly a commonly-discussed topic, either.

I think we just have to tip our hat to nature for this one and accept that this is one of those funny, unlikely coincidences that we just can’t quantify.

That and thank the coincidence gods or the opportunity for endless puns about monkeys.

 

Numbers Sometimes Lie

(Submitted by Skepticality listener  Stephen Hayko.)

I do clerical work for a company that uses part numbers that are six digits long and begin with either a 5 or 6. When we order parts, our ordering system generates a purchase order (PO) that is six digits long and sequential.

We’ve been using this ordering system for about a year, and throughout the company, we typically place about 45-50 orders in the system every week, in my branch. We’re one of 25 branches in the US that uses this system, and we are one of the higher-volume branches – most other branches use about 30-35 orders per week.

In March, I placed an order for part number 649384. This is a relatively common piece and we typically sell 8-10 of this part per week – so it accounts for 16-20% of our orders. Lo and Behold! The PO was 649384.

Given that information, what are the odds that PO 649384 was attached to an order for part number 649384?

Thanks!


Below are the extended notes provided by contributing editor Mark Gouch for use in Skepticality Episode 253. Mark is a wastewater treatment system operator and engineer living in Smithtown, NY (Long Island). He started to become interested in coincidences after recognizing the series of events that conspired to get him employment on Long Island many years ago. Two of Mark’s recommended books include “The Drunkard’s Walk: How Randomness Rules Our Lives” by American physicist and author Leonard Mlodinow, and “The Hidden Brain: How Our Unconscious Minds Elect Presidents, Control Markets, Wage Wars, and Save Our Lives” by Shankar Vedantam.

Take a look and leave your comments below. Also, please be sure to listen to the podcast for our own hilarious commentary.

This problem seemed very straightforward at first, but on closer review it seems that there is something interesting hidden in the details Steve provided. Estimating the total number of POs generated company-wide using the average of the ranges you gave comes to about 780 POs per week. That’s about 3,586 per month, and 43,030 annually. Steve said the numbers generated automatically are six digits long, and are sequential. So if 43,030 are generated annually, it would take 649,384 / 43,030 years to hit number 649384, or about 15 years, one month. So barring any large increase or decrease in business, in about 15 years you may see this happen again. But wait, Steve also stated that the company has been using this system for a year. Something is fishy here. If the numbers are sequential, and they’ve used this for a year, then they must not have started at 000 001. They must have started somewhere around 649,384 – 43,030 = 606,354. That is, if the numbers Steve gave were close to correct. Starting to wonder if this is some sort of trick question here Steve. Something does not add up. Literally.

So either Steve submitted a trick question which he knows is impossible, or someone, for some reason, decided to covertly tamper with the automatic PO number generating software to make it start at some number other than 000001. Perhaps someone thought PO numbers like 000001, 0000002, etc. would make the company look like a startup, or just would look odd. PO number 606354 makes the company look like they’ve been in business for a long time, and/or process quite a lot of POs. So this great mystery deserves some investigation. Inquisitive minds want to know what was the first PO number generated, who determined what that number was, how did they determine it, and why? And was it part of a conspiracy, or did this mysterious person act alone? A reasonably thorough investigation is certainly in order. There must be a logical explanation.

A number starting in 60 does not look like someone used their birthdate, which would be weird anyway. Does Steve know the last six digits of the CEO’s social security number? Well, there could be a mundane explanation, like the numbers were sequential for many years, maybe kept on a clipboard or something, and only a year ago was it computerized. Let’s go with that, and forget the conspiracy theory. In fact, everyone please forget all conspiracy “theories.”

So back to the actual question. It seems that Steve already knows the answer to his question. He said that this common part accounts for 16 to 20% of their orders. So the odds of any one order having this part number on it should be approximately……16 to 20%! Grab any random order out of the pile (or computer system) and there will be a 16-20% chance that it has this part number on it. That goes for any PO number: 650000, 700000, 131313, and also for 649384. Steve knew the answer; he just did not know that he knew. This is certainly not a criticism. It is better to not know that you know something than to think you know something that you do not. The fallacy was that he thought the odds would be different for that one special PO number, but they are not. The odds are the odds. The odds, in this case, are perfectly rational – but not sequential.

(Submitted by Skepticality listener Misty Wegman.)

First of all, I do not believe in horoscopes or any such nonsense but in this situation it makes the story better. Feel free to take it out if it gets too messy.

I was born on June 2nd and my dad was born on June 3rd. This makes our astrological signs “Gemini” or Twins. He is an identical twin. I gave birth to fraternal twins. He is a twin-twin and I am a twin that had twins.

It gets better. My Aunt (father’s-sister) had identical twins. My mother’s Aunt had fraternal twins too (which is where I got them from). After my mother divorced my father, she married the boy of boy/girl fraternal twins. So I have twin second cousins, twin cousins, 2 twin dads and I’m an astrological twin that had twins.

What are the odds of more twins being born in my family?


Below are the extended notes provided by cognitive psychologist and statistician Barbara Drescher for use in Skepticality Episode 000.  Take a look and leave your comments below. Also, please be sure to listen to the podcast for our own hilarious commentary. Also, visit Barbara’s blog ICBS Everywhere, and Insight at Skeptics Society.

Well, I would say that the odds of more twins being born might be pretty good, but not much higher than in anyone else’s family. Of course, one would have to define and learn quite a few things before even trying to come up with an actual number, including what is meant by “family” (siblings? offspring?) and the ages and intents of those involved.

But there are a few things to talk about nonetheless.

First, the author notes that two of the cases of twins are identical, and one case is a step-father. Identical twins occur as randomly as astrological signs and one has no blood ties to a step-father, so these factors are independent–they have no influence on whether twins will occur in a family. Fraternal twins, on the other hand, do run in families, as hyperovulation is a genetic trait, although one does not receive genes from aunts/uncles. If genetics are to blame, the author’s chances of having fraternal twins on a subsequent pregnancy is now double. In addition, the age of the mother is a factor–the older the mother is, the more likely fraternal twins will occur.

All of that said, fraternal twins can also be the result of fertility treatments. This introduces a controllable factor that can increase the odds of twins dramatically. If fertility treatments are involved, genetics can’t be blamed.

According to Babycenter.com and several other online sources, the most recent data shows about 1 in every 30 births today are twins (about 3.3%), with only a about 10% of those being identical. So, about 3 in every 1,000 births will be twins born under Gemini.

Having that many twins in a family depends on many factors such as the size of the family, but I do love the idea of introducing someone as a twin twin with twins (yes, I know author isn’t a twin herself, but I took some license).

(Submitted by Skepticality personality and friend of the blog Bob Blaskiewicz.)

What are the odds? I mean, they must be CrAzY!!!!
Bob :)
Two players die at world chess event in Norway
Competitor dies in the middle of a match during Chess Olympiad in Norway and another is found dead in hotel room
By Esther Addley

The most prestigious international tournament in chess, at which the world’s top players compete alongside amateurs to win honours for their country, has ended on a sombre note after two players died suddenly within hours of each other, one while he was in the middle of a match. Hundreds of spectators attending the 41st Chess Olympiad in Tromsø, Norway, and countless others watching live TV coverage on Norway’s state broadcaster, reacted with shock after Kurt Meier, 67, a Swiss-born member of the Seychelles team, collapsed on Thursday afternoon, during his final match of the marathon two-week contest. Despite immediate medical attention at the scene he died later in hospital.Hours later, a player from Uzbekistan who has not yet been named was found dead in his hotel room in central Tromsø. Norwegian police and the event’s organisers said on Friday they were not treating the deaths as suspicious.

“We regard these as tragic but natural deaths,” said Jarle Heitmann, a spokesman for the Chess Olympiad. “When so many people are gathered for such a long time, these things can happen.

The Olympiad involved 1,800 competitors from 174 countries, accompanied by more than 1,000 coaches, delegates and fans.

The event sees players compete in national teams over 11 rounds, often playing matches that last for up to six hours, and claims a worldwide online audience of tens of millions.

There were brief scenes of panic in the hall after Meier’s collapse, when spectators reportedly mistook a defibrillator for a weapon. Play was briefly suspended before his death was marked with a minute’s silence during the closing ceremony.

While the causes of the two men’s deaths are still unknown, they will raise questions about the mental and physical stress that tournaments place on players.

Meier is not the first player to die in the middle of a match; in 2000 Vladimir Bagirov, a Latvian grandmaster, had a fatal heart attack during a tournament in Finland, while in the same year, another Latvian, Aivars Gipslis, suffered a stroke while playing in Berlin from which he later died.

One of Australia’s leading players, Ian Rogers, retired abruptly from chess in 2007, saying he had been warned by his doctors that the stress of top-level competition was causing him serious health problems.

Tarjei J. Svensen, a reporter for chess24.com who attended the Olympiad, said the event had a reputation for heavy drinking. “There are two rest days during the competition, and particularly the night before the rest days there tends to be a lot of drinking,” he said.

A favourite attraction for delegates was the now-legendary “Bermuda party”, he added, hosted at each Olympiad by a member of the Bermudan delegation.

The Olympiad was big news in Norway, with the state broadcaster, NRK, carrying hours of live coverage each day, and the country’s government paying 87m kroner (£8.5m) for the privilege of hosting the event.

Last week the women’s team from Burundi were disqualified after failing to show up for their round six and seven matches; they remain unaccounted for, Heitmann said on Friday.

“It has been an eventful Olympiad, certainly,” said Svensen.

_______________________________________________________________________________________________________

Below are the extended notes provided by contributing editor Mark Gouch for use in Skepticality Episode 251. Mark is a wastewater treatment system operator and engineer living in Smithtown, NY (Long Island). He started to become interested in coincidences after recognizing the series of events that conspired to get him employment on Long Island many years ago. Two of Mark’s recommended books include “The Drunkard’s Walk: How Randomness Rules Our Lives” by American physicist and author Leonard Mlodinow, and “The Hidden Brain: How Our Unconscious Minds Elect Presidents, Control Markets, Wage Wars, and Save Our Lives” by Shankar Vedantam.

Take a look and leave your comments below. Also, please be sure to listen to the podcast for our own hilarious commentary.

A sad story, and surely it must have been a shock to those involved in the chess tournament. Well, we do not have a lot of information about the cause of death of the two men, so that limits what we might say about the probability. The best we can do is a very general estimate of the odds of the death of any person out of a thousand random persons. According to the ECOLOGY Global Network ™ web site, as of 2011 the global daily death rate was about 151,600 deaths per day. And in round numbers world population is about 7.3 billion.

So it would seem we should estimate the odds of one person out of a thousand at any conference, or any group of a thousand people should be somewhere around 151,600/7,30,000,000  * 1000= 0.0215, or about 2.15%. The odds of two persons in the group dying would be 0.0215 * 0.0215=0.00046, or about 0.046%. I think most people like to think of odds in terms of per million. So 0.0046% odds is 46,200 per million. This means that for every million conferences, meetings, etc. that have about a thousand persons in attendance, there would be over 46,000 of those events.

Accident Down Under

(Submitted by Skepticality listener  Craig.)

Hi.

I have this story this is totally legit, happened to me a few months ago.

Basically one Sunday night we heard a big crash out the front of our house. Turns out a car had crashed through our neighbour and my front fence with three young occupants (2 males, 1 female). The police came and took the relevant details and while getting names we realised the driver lived right next door to my sister, who lives two suburbs away (Melbourne, Australia). She always said they were dodgy neighbours!

Then when the my neighbours daughter in law came around to see if everything was fine she realised that she knew the female occupant of the car (who then begged not to tell her parents). Her sister was the god mother of the girl.

So it was to co-incidents in the one crash. The odd’s must be crazy!

Regards

Craig

Below are the extended notes provided by contributing editor Mark Gouch for use in Skepticality Episode 249. Mark is a wastewater treatment system operator and engineer living in Smithtown, NY (Long Island). He started to become interested in coincidences after recognizing the series of events that conspired to get him employment on Long Island many years ago. Two of Mark’s recommended books include “The Drunkard’s Walk: How Randomness Rules Our Lives” by American physicist and author Leonard Mlodinow, and “The Hidden Brain: How Our Unconscious Minds Elect Presidents, Control Markets, Wage Wars, and Save Our Lives” by Shankar Vedantam.

Take a look and leave your comments below. Also, please be sure to listen to the podcast for our own hilarious commentary.

There is an old adage that says most car accidents happen close to home. We’ve all heard this, and it seems reasonable that since we drive to and from our homes quite often, that we probably spend a lot more time driving near our home than far away, so we would expect to have more accidents close to home.

According to DrivingToday web site , this kind of data is surprisingly not typically gathered by law enforcement or insurance companies, but the Progressive Insurance company completed a survey in 2001 to try to find out. (Gather a decent amount of data, analyze the data, and learn something. What a progressive thing to do! )

According to the site, they gathered information from people who were involved in 11,000 accidents, and found 52 % occurred within 5 miles of home and 77% within 15 miles. (Isn’t it nice when actual statistics confirm what we thought we already knew? This seems to be not usually the case. So much of what people think is true turns out not to be true when researched objectively. But that is another story).

Craig said his sister lived two suburbs away. Suburbs is not a standard unit of distance in the U.S., so we are not sure how far that is. It’s probably safe to assume the distance is 15 miles or less. If so, then the person driving had really good odds of having an accident within a radius that includes his house.

So the fact that the driver lived only two towns away has to be considered as unremarkable. Or actually: pretty likely. It would be highly unlikely for a person who lives in Canada or Argentina to have crashed into your yard.

Your neighbor’s daughter-in-law knows one of the people in the car. So let’s restate this: Not your neighbor, not his child, but the child’s spouse knew someone in the car. So the acquaintance had three “degrees of separation”, so to speak, half way to Kevin Bacon (not sure if your part of the world will get that reference).

It seems that this coincidence should be calculated by the number of acquaintances that your neighbor’s family has compared to the number of people living in the greater Melbourne area. The number of acquaintances that people have on average has been estimated by various methods to be in a wide range of between 150 and 300.

A very cool teenage acquaintance I asked said 1,500 minimum, in this, the social media age. But I think that is high. According to Robin Dunbar on the Social Science Space Web Site, a good estimate is 150. In this case we are talking about acquaintances of family members, who will have some overlap in the people they know, so let’s conservatively use 100.

So if your neighbor knows 100 people and each one of those 100 knows 100 people, then the total number of acquaintances of your neighbor and his acquaintances is 100 * 100 or 10,000. Assume your neighbors have two children, and both are married. So we have your neighbor and his wife, their two kids, and their two spouses, for a total of 6 people. Those 6 people should have about 60,000 acquaintances. Wikipedia (the source of all knowledge) indicates that about 4.5 million people live in the greater Melbourne area . So it seems that the odds of this coincidence would be about 60,000/4,500,000 or about 1.33 out of a hundred. That’s not all that low. (if we used 150 the odds come out to 3.0 out of a hundred.

  • http://www.drivingtoday.com/features/archive/crashes/index.html#axzz3SQw6YAQU
  • http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon
  • http://www.socialsciencespace.com/2013/11/robin-dunbar-on-dunbar-numbers
  • http://en.wikipedia.org/wiki/Melbourne

Clear as Glass

(Submitted by Skepticality listener  Bill Walker.)

Hi, I am a contractor in New Jersey. I recently ordered 14 windows for a job. They only had 11 of the windows in stock so I agreed to accept the 11 and get the other 3 when they became available.

A few days later when the 11 windows were delivered to the jobsite I paid for them with my business credit card. They completed the transaction by having the driver call the home office and give them my credit card information. The driver gave the secretary the 6 digit total for the windows and then proceeded to give her my credit card number.

Business & Finance

As he was giving her the credit card number I heard her stop him before he finished so I asked what was wrong. It turns out that the first 6 numbers of my credit card were the exact same 6 numbers, in the same order, as the total for the delivery. She thought he was giving her the total again. And since my card grouped the first 4 numbers together there was even a space where the decimal in the total is located.

I would be interested in knowing what the odds of that happening might be. Even throwing aside the fact that I didn’t receive the complete delivery and that I chose to use that particular card it must be a very rare event.

Business & Finance

I have recounted this story to a few friends since it has happened and, to a man, the response has been “You should play those numbers”. (in the NJ Pick 6 Lottery)

When my wife suggested that to me I responded by saying that of course I should play those numbers because the same super natural force that had created the coincidence was surely going to exert it’s powers over the lottery for me too. I didn’t play the numbers.

It’s easy to see how someone who has a tendency to believe that there is no such thing as a coincidence and everything that happens has meaning would assign special significance to an event like this. And apparently even for people who seems completely rational their first response was to suggest that the numbers on my credit card and a receipt for some windows could somehow influence the outcome of a lottery.

Hopefully I won’t fall into that trap. Knock on wood.


Below are the extended notes provided by contributing editor Mark Gouch for use in Skepticality Episode 248. Mark is a wastewater treatment system operator and engineer living in Smithtown, NY (Long Island). He started to become interested in coincidences after recognizing the series of events that conspired to get him employment on Long Island many years ago. Two of Mark’s recommended books include “The Drunkard’s Walk: How Randomness Rules Our Lives” by American physicist and author Leonard Mlodinow, and “The Hidden Brain: How Our Unconscious Minds Elect Presidents, Control Markets, Wage Wars, and Save Our Lives” by Shankar Vedantam.

Take a look and leave your comments below. Also, please be sure to listen to the podcast for our own hilarious commentary.

We’re sure it must have been at first a confusing, then a weird experience to realize that the sequence of numbers in your credit card matched the sequence of numbers in the cost for the windows. Determining the probability of this happening seems to be a pretty straightforward process. Bill also asked a few related questions that are interesting.

First of all, Bill did not mention the cost of the individual windows. Assuming they cost somewhere in the range of $120 to $500 each (based on a quick web search for single hung windows), the range of costs would be from $1,320 to $7,000. The low number in the range is estimated using the low range of cost of windows and only 11 being available. The high end of the range is estimated using the high range of the unit cost and assumes all 14 windows were available. Almost forgot this: If we assume NJ state tax of 6%, the maximum cost would be $7,420.00. This demonstrates that regardless of whether 11 or 14 windows were available, the cost would be less than $ 9,999.99, so the cost including pennies will contain six digits (Thousands, hundreds, tens, and dollars, and two decimal, or cents digits). Therefore, the fact that only 11 were available does not change anything in the probability estimate. Anything we determine is true for 11 windows available, will be true for the case of 14. We will still be talking about a series of 6 digits. Make sense?

So the question is what is the probability of a six digit series of numbers matching a different series of six digits. The possible range of six digits is 000000 to 999999. (Writing it as either digits with commas or using dollar figures makes it easier to see there are six digits). So there are one million possible sequences of numbers of six digits. And the odds would be 1 in 1,000,000, one in a million.

Now considering how many thousands of contractors there are, and how many pay for supplies in the same cost range with credit cards would be tough to estimate. But it is reasonable to expect that there are well over one million such purchases in the U.S. annually. So this probably happens at least once a year in the U.S., and probably much more often than that.

Bill mentioned the decimal point in the cost matched up to a space in the sequence of digits on the credit card. This seemed like an addition to the coincidence. He did not mention the lack of a space in the card sequence where the comma would be in the cost, which, if you consider a space in the place where the decimal was to be noteworthy, one would assume you would think that the lack of a space where the comma would be to be noteworthy also. This may be a case as Dr. Michael Shermer has pointed out many times that our brains “remember the hits and forget the misses.” But in general, we’re talking about a sequence of numbers, so let’s ignore the decimal point and comma. (Plus, in Europe they use decimals and commas in the opposite functions as we do, so thinking more globally, lets agree it is ok to ignore them.).

Now to the question of whether it is sound advice to suggest that based on this coincidence that it would be wise to purchase a lottery ticket with the same sequence of numbers. It would not. In probability these are referred to as independent events. What the sequence of numbers in a credit card number and/or an invoice amount are, will have absolutely no effect on the random numbers generated by a lottery ticket. The odds will be the same for your lottery number. But if that series of numbers were to win the lottery for you, you’d have a heck of a story to tell. It would still only be a coincidence, but a good story. So if you want to choose the same numbers for a lottery, do it for fun, but don’t do it expecting any advantage or disadvantage in your odds of winning the lottery.

Lastly, the question of whether some supernatural entity had an impact on the coincidence. Bill offered no evidence for the existence of, or the potential observed impact of a supernatural entity on the coincidence or any other event that has occurred in the real world. So it would be impossible to estimate the odds of that. We are skeptical enough to demand evidence.

Three Trendies

(Submitted by Skepticality listener Michael McClure.)

I’ve been working at Disney Animation now for more than 18 years. My son was 11 months old when I started my career at the mouse. He’s now a 19 year old sophomore in college.

We were working on Tarzan a year or so after I started at Disney Animation. I got to know the Artistic Coordinator on the show, a fellow Scot musician named Fraser. One morning he called Support (where I was working at the time), so I took the ticket and went to see him. I had brought in some of my slides in a sleeve (16 slides per sleeve) a few days earlier, because I had a shot of the composer on Tarzan, one Phil Collins. However, instead of the short-haired, balding Phil of the early ’80s, my shot was from a Genesis gig in 1977 at the San Diego Sports Arena, with hirsute Phil (long hair, beard and all!) decked out in the jersey of the farm hockey team from the town that he threw on for the band’s encore of the evening, singing his heart out in a pool of red light. I’d shot the picture 20 years prior, and of course hippie Phil would be relatively unrecognizable to most folks in the late ’90s. The Tarzan production admin folks put out a printed newsletter each week containing the goings on in production-land, and I thought it would be fun to put this picture of Phil into the newsletter, to see if anyone could guess who it was.

HairyPhil

Phil Collins, San Diego Sports Arena, 1977 Genesis Concert

I brought the sleeve of slides with me to Fraser’s office, I pulled out the slides to show to him, to see if maybe my musical brethren could guess who the hairy man in the slide was.

Fraser held the sleeve up to the light, and he pondered the picture of Phil for a moment, but I saw his glance drift to one of the other slides in the sleeve. Fraser couldn’t guess who it was, and was amazed when I told him that it was a picture of Phil Collins, but he kept looking at a different slide in the sleeve. Finally, Fraser said, “Can I pull this slide out?” pointing at some random slide I had in the sleeve along with my Genesis concert pictures. I said sure, and he pulled out a picture I’d shot of some random people along Princes Street in Edinburgh, Scotland when I was there with the California Repertory Theater in the summer of 1980 for the Edinburgh Fringe Festival, a huge, yearly theatrical festival held in the city. Fraser inspected the slide very closely, and then looked me in the eye, and said, “This is my best friend Graham.”

“What? Really?”

“Yes. No doubt about it. This is Graham.”

3trendies

“3 trendies”

Well, that was stunning right there. The picture, as you can tell, shows three trendies (as I wrote on the edge of the slide) whom I stopped on the street that sunny day in August of 1981, and asked in my California twang if I could take their picture. The girls were fine with it, but the boy in the shot was huffy. I think he was annoyed by this ‘foreigner’ bothering them, and showed that by being annoyed and petulant in the picture (but, he was still in the picture!).

SlideSheet

The sheet of slides, showing where the two pictures were located.

HairyPhilSlide

The “P. Collins” slide

3trendiesSlide (1)

The “3 trendies” slide (dated SEP 80).

Fraser and I had a great can-you-believe-it moment about this, a good laugh, and then we went about our day.

Within 20 minutes, Fraser had called back down to my offices, asking for me. I went back to his office, where I found him, looking even more stunned. After seeing this now 16 or 17 year old picture of his Best Friend, shot by his Support Guy at Disney Animation, he just had to call Graham to tell him about it. So, he did. And things got REALLY weird.

Graham apparently picked up his phone and said hello to Fraser. Fraser explained about the photo, and Graham shrieked in his ear on the phone and hung up. I mean, Fraser said he really SHRIEKED at him, and then abruptly hung the phone up. That was it.

So, Fraser called him back.

Fraser got Graham back on the line, and after a few moments, he drew the story of the shriek and the ensuing hang up out of him. Graham was completely beside himself the entire time they were on the phone. But, in the end, it made perfect sense.

Graham told Fraser that just a few hours earlier THAT SAME DAY, he had had a conversation with his old friend — let’s call her Carol — the small brunette in my photograph. He was attempting to refresh her memory of their other friend — let’s call her Alice — the blonde in the picture. But, Carol wasn’t remembering her. She couldn’t quite place her. Apparently Alice had left Scotland not too long after I’d taken the picture of the three of them in Edinburgh, to marry the bass player of the Bay City Rollers, a then very popular pop group/boy band. She’d gone all the way to New Jersey to marry this guy, apparently. In any case, Graham was trying to remind Carol of this other girl Alice, when he said something to the effect of, “Do you remember when that Yank stopped us on Princes Street years ago and took a picture of the three of us?” hoping that would jar her memory. Maybe it did, or maybe it didn’t — I don’t remember that part. But, Graham hung up with Carol eventually, and then Fraser rung him up from the States soon after that call and said over the staticky international land line, “You’re not going to believe the picture I just saw of you and two girls on Princes Street from the summer of 1981…”

I think I would shriek, too.


Below are the extended notes provided by cognitive psychologist and statistician Barbara Drescher for use in Skepticality Episode 247.  Take a look and leave your comments below. Also, please be sure to listen to the podcast for our own hilarious commentary. Also, visit Barbara’s blog.

There are some factors that increase the probability that Fraser would recognize someone in one of the pictures, namely the shared interest in a genre of music and probably the artist. However, it’s a pretty amazing and impressive event. I’ll add that if I was in Graham’s shoes, I would probably shriek, too. These things are bound to happen from time-to-time, of course, so there’s nothing supernatural about it, but that wouldn’t keep my jaw from hitting the floor if this had happened to me.